Neural Mechanism to Simulate a Scale-Invariant Future
نویسندگان
چکیده
Predicting the timing and order of future events is an essential feature of cognition in higher life forms. We propose a neural mechanism to nondestructively translate the current state of spatiotemporal memory into the future, so as to construct an ordered set of future predictions almost instantaneously. We hypothesize that within each cycle of hippocampal theta oscillations, the memory state is swept through a range of translations to yield an ordered set of future predictions through modulations in synaptic connections. Theoretically, we operationalize critical neurobiological findings from hippocampal physiology in terms of neural network equations representing spatiotemporal memory. Combined with constraints based on physical principles requiring scale invariance and coherence in translation across memory nodes, the proposition results in Weber-Fechner spacing for the representation of both past (memory) and future (prediction) timelines. We show that the phenomenon of phase precession of neurons in the hippocampus and ventral striatum correspond to the cognitive act of future prediction.
منابع مشابه
بررسی توانمندی مدل شبکه عصبی مصنوعی در شبیهسازی فرآیند بارش-رواناب در شرایط تغییر اقلیم (مطالعه موردی: حوزه سد پاشاکلا بابل)
River flow forecasting plays an important role in planning, management and operation of water resources. To achieve this goal and according to the phenomenon of global warming, it is necessary to simulate the daily time series of rainfall and runoff for future periods. Therefore, it is important to survey the detection of climate change event and its impact on precipitation and runoff in the ba...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimation of groundwater level using a hybrid genetic algorithm-neural network
In this paper, we present an application of evolved neural networks using a real coded genetic algorithm for simulations of monthly groundwater levels in a coastal aquifer located in the Shabestar Plain, Iran. After initializing the model with groundwater elevations observed at a given time, the developed hybrid genetic algorithm-back propagation (GA-BP) should be able to reproduce groundwater ...
متن کاملEstimating scale-invariant future in continuous time
Natural learners must compute an estimate of future outcomes that follow from a stimulus in continuous time. Critically, the learner cannot in general know a priori the relevant time scale over which meaningful relationships will be observed. Widely used reinforcement learning algorithms discretize continuous time and use the Bellman equation to estimate exponentially-discounted future reward. ...
متن کاملSTRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 28 12 شماره
صفحات -
تاریخ انتشار 2016